Compare a sample mean to a population mean
single_mean( dataset, var, comp_value = 0, alternative = "two.sided", conf_lev = 0.95, data_filter = "", envir = parent.frame() )
dataset | Dataset |
---|---|
var | The variable selected for the mean comparison |
comp_value | Population value to compare to the sample mean |
alternative | The alternative hypothesis ("two.sided", "greater", or "less") |
conf_lev | Span for the confidence interval |
data_filter | Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000") |
envir | Environment to extract data from |
A list of variables defined in single_mean as an object of class single_mean
See https://radiant-rstats.github.io/docs/basics/single_mean.html for an example in Radiant
summary.single_mean
to summarize results
plot.single_mean
to plot results
#> List of 9 #> $ dat_summary: tibble [1 × 7] (S3: tbl_df/tbl/data.frame) #> ..$ diff : num 3907 #> ..$ mean : num 3907 #> ..$ n : int 3000 #> ..$ n_missing: int 0 #> ..$ sd : num 3957 #> ..$ se : num 72.2 #> ..$ me : num 142 #> $ res : tibble [1 × 8] (S3: tbl_df/tbl/data.frame) #> ..$ estimate : Named num 3907 #> .. ..- attr(*, "names")= chr "mean of x" #> ..$ statistic : Named num 54.1 #> .. ..- attr(*, "names")= chr "t" #> ..$ p.value : num 0 #> ..$ parameter : Named num 2999 #> .. ..- attr(*, "names")= chr "df" #> ..$ conf.low : num 3766 #> ..$ conf.high : num 4049 #> ..$ method : chr "One Sample t-test" #> ..$ alternative: chr "two.sided" #> $ df_name : chr "diamonds" #> $ dataset : tibble [3,000 × 1] (S3: tbl_df/tbl/data.frame) #> ..$ price: int [1:3000] 580 650 630 706 1080 3082 3328 4229 1895 3546 ... #> ..- attr(*, "description")= chr "## Diamond prices\n\nPrices of 3,000 round cut diamonds\n\n### Description\n\nA dataset containing the prices a"| __truncated__ #> $ var : chr "price" #> $ comp_value : num 0 #> $ alternative: chr "two.sided" #> $ conf_lev : num 0.95 #> $ data_filter: chr "" #> - attr(*, "class")= chr [1:2] "single_mean" "list"