Summary method for doe function

# S3 method for doe
summary(object, eff = TRUE, part = TRUE, full = TRUE, est = TRUE, dec = 3, ...)

Arguments

object

Return value from doe

eff

If TRUE print efficiency output

part

If TRUE print partial factorial

full

If TRUE print full factorial

est

If TRUE print number of effects that will be estimable using the partial factorial design

dec

Number of decimals to show

...

further arguments passed to or from other methods.

Details

See https://radiant-rstats.github.io/docs/design/doe.html for an example in Radiant

See also

doe to calculate results

Examples

c("price; $10; $13; $16", "food; popcorn; gourmet; no food") %>% doe() %>% summary()
#> Experimental design #> # trials for partial factorial: 9 #> # trials for full factorial : 9 #> #> Attributes and levels: #> price: $10, $13, $16 #> food: popcorn, gourmet, no_food #> #> Design efficiency: #> Trials D-efficiency Balanced #> 5 0.135 FALSE #> 6 0.449 TRUE #> 7 0.383 FALSE #> 8 0.368 FALSE #> 9 1.000 TRUE #> #> Partial factorial design correlations: #> ** Note: Variables are assumed to be ordinal ** #> price food #> price 1 0 #> food 0 1 #> #> Partial factorial design: #> trial price food #> 1 $10 popcorn #> 2 $10 gourmet #> 3 $10 no_food #> 4 $13 popcorn #> 5 $13 gourmet #> 6 $13 no_food #> 7 $16 popcorn #> 8 $16 gourmet #> 9 $16 no_food #> #> Estimable effects from partial factorial design: #> #> price|$13 #> price|$16 #> food|gourmet #> food|no_food #> price|$13:food|gourmet #> price|$16:food|gourmet #> price|$13:food|no_food #> price|$16:food|no_food #> #> Full factorial design: #> trial price food #> 1 $10 popcorn #> 2 $10 gourmet #> 3 $10 no_food #> 4 $13 popcorn #> 5 $13 gourmet #> 6 $13 no_food #> 7 $16 popcorn #> 8 $16 gourmet #> 9 $16 no_food