Summary method for doe function
# S3 method for doe summary(object, eff = TRUE, part = TRUE, full = TRUE, est = TRUE, dec = 3, ...)
object | Return value from |
---|---|
eff | If TRUE print efficiency output |
part | If TRUE print partial factorial |
full | If TRUE print full factorial |
est | If TRUE print number of effects that will be estimable using the partial factorial design |
dec | Number of decimals to show |
... | further arguments passed to or from other methods. |
See https://radiant-rstats.github.io/docs/design/doe.html for an example in Radiant
doe
to calculate results
#> Experimental design #> # trials for partial factorial: 9 #> # trials for full factorial : 9 #> #> Attributes and levels: #> price: $10, $13, $16 #> food: popcorn, gourmet, no_food #> #> Design efficiency: #> Trials D-efficiency Balanced #> 5 0.135 FALSE #> 6 0.449 TRUE #> 7 0.383 FALSE #> 8 0.368 FALSE #> 9 1.000 TRUE #> #> Partial factorial design correlations: #> ** Note: Variables are assumed to be ordinal ** #> price food #> price 1 0 #> food 0 1 #> #> Partial factorial design: #> trial price food #> 1 $10 popcorn #> 2 $10 gourmet #> 3 $10 no_food #> 4 $13 popcorn #> 5 $13 gourmet #> 6 $13 no_food #> 7 $16 popcorn #> 8 $16 gourmet #> 9 $16 no_food #> #> Estimable effects from partial factorial design: #> #> price|$13 #> price|$16 #> food|gourmet #> food|no_food #> price|$13:food|gourmet #> price|$16:food|gourmet #> price|$13:food|no_food #> price|$16:food|no_food #> #> Full factorial design: #> trial price food #> 1 $10 popcorn #> 2 $10 gourmet #> 3 $10 no_food #> 4 $13 popcorn #> 5 $13 gourmet #> 6 $13 no_food #> 7 $16 popcorn #> 8 $16 gourmet #> 9 $16 no_food