Predict method for the nb function
# S3 method for nb predict( object, pred_data = NULL, pred_cmd = "", pred_names = "", dec = 3, envir = parent.frame(), ... )
object | Return value from |
---|---|
pred_data | Provide the dataframe to generate predictions (e.g., titanic). The dataset must contain all columns used in the estimation |
pred_cmd | Generate predictions using a command. For example, `pclass = levels(pclass)` would produce predictions for the different levels of factor `pclass`. To add another variable, create a vector of prediction strings, (e.g., c('pclass = levels(pclass)', 'age = seq(0,100,20)') |
pred_names | Names for the predictions to be stored. If one name is provided, only the first column of predictions is stored. If empty, the level in the response variable of the nb model will be used |
dec | Number of decimals to show |
envir | Environment to extract data from |
... | further arguments passed to or from other methods |
See https://radiant-rstats.github.io/docs/model/nb.html for an example in Radiant
nb
to generate the result
summary.nb
to summarize results
#> Naive Bayes Classifier #> Data : titanic #> Response variable : survived #> Level(s) : Yes, No in survived #> Explanatory variables: pclass, sex, age #> Prediction dataset : titanic #> Rows shown : 10 of 1,043 #> #> pclass sex age Yes No #> 1st female 29.000 0.877 0.123 #> 1st male 0.917 0.510 0.490 #> 1st female 2.000 0.922 0.078 #> 1st male 30.000 0.376 0.624 #> 1st female 25.000 0.881 0.119 #> 1st male 48.000 0.372 0.628 #> 1st female 63.000 0.891 0.109 #> 1st male 39.000 0.367 0.633 #> 1st female 53.000 0.878 0.122 #> 1st male 71.000 0.451 0.549#> Naive Bayes Classifier #> Data : titanic #> Response variable : survived #> Level(s) : Yes, No in survived #> Explanatory variables: pclass, sex, age #> Prediction dataset : titanic #> Rows shown : 10 of 1,043 #> #> pclass sex age Yes No #> 1st female 29.000 0.877 0.123 #> 1st male 0.917 0.510 0.490 #> 1st female 2.000 0.922 0.078 #> 1st male 30.000 0.376 0.624 #> 1st female 25.000 0.881 0.119 #> 1st male 48.000 0.372 0.628 #> 1st female 63.000 0.891 0.109 #> 1st male 39.000 0.367 0.633 #> 1st female 53.000 0.878 0.122 #> 1st male 71.000 0.451 0.549#> Naive Bayes Classifier #> Data : titanic #> Response variable : survived #> Level(s) : Yes, No in survived #> Explanatory variables: pclass, sex, age #> Prediction command : pclass = levels(pclass) #> #> age sex pclass Yes No #> 29.813 male 1st 0.377 0.623 #> 29.813 male 2nd 0.215 0.785 #> 29.813 male 3rd 0.110 0.890#> Naive Bayes Classifier #> Data : titanic #> Response variable : pclass #> Level(s) : 1st, 2nd, 3rd in pclass #> Explanatory variables: survived, sex, age #> Prediction dataset : titanic #> Rows shown : 10 of 1,043 #> #> survived sex age 1st 2nd 3rd #> Yes female 29.000 0.410 0.303 0.287 #> Yes male 0.917 0.117 0.315 0.568 #> No female 2.000 0.058 0.253 0.689 #> No male 30.000 0.107 0.222 0.672 #> No female 25.000 0.133 0.258 0.609 #> Yes male 48.000 0.633 0.236 0.130 #> Yes female 63.000 0.891 0.098 0.011 #> No male 39.000 0.196 0.262 0.542 #> Yes female 53.000 0.792 0.165 0.043 #> No male 71.000 0.821 0.153 0.026#> Naive Bayes Classifier #> Data : titanic #> Response variable : pclass #> Level(s) : 1st, 2nd, 3rd in pclass #> Explanatory variables: survived, sex, age #> Prediction dataset : titanic #> Rows shown : 10 of 1,043 #> #> survived sex age 1st 2nd 3rd #> Yes female 29.000 0.410 0.303 0.287 #> Yes male 0.917 0.117 0.315 0.568 #> No female 2.000 0.058 0.253 0.689 #> No male 30.000 0.107 0.222 0.672 #> No female 25.000 0.133 0.258 0.609 #> Yes male 48.000 0.633 0.236 0.130 #> Yes female 63.000 0.891 0.098 0.011 #> No male 39.000 0.196 0.262 0.542 #> Yes female 53.000 0.792 0.165 0.043 #> No male 71.000 0.821 0.153 0.026#> Naive Bayes Classifier #> Data : titanic #> Response variable : pclass #> Level(s) : 1st, 2nd, 3rd in pclass #> Explanatory variables: survived, sex, age #> Prediction dataset : titanic #> Rows shown : 10 of 1,043 #> #> survived sex age 1st 2nd 3rd #> Yes female 29.000 0.410 0.303 0.287 #> Yes male 0.917 0.117 0.315 0.568 #> No female 2.000 0.058 0.253 0.689 #> No male 30.000 0.107 0.222 0.672 #> No female 25.000 0.133 0.258 0.609 #> Yes male 48.000 0.633 0.236 0.130 #> Yes female 63.000 0.891 0.098 0.011 #> No male 39.000 0.196 0.262 0.542 #> Yes female 53.000 0.792 0.165 0.043 #> No male 71.000 0.821 0.153 0.026