Predict method for the rforest function
# S3 method for rforest predict( object, pred_data = NULL, pred_cmd = "", pred_names = "", OOB = NULL, dec = 3, envir = parent.frame(), ... )
object | Return value from |
---|---|
pred_data | Provide the dataframe to generate predictions (e.g., diamonds). The dataset must contain all columns used in the estimation |
pred_cmd | Generate predictions using a command. For example, `pclass = levels(pclass)` would produce predictions for the different levels of factor `pclass`. To add another variable, create a vector of prediction strings, (e.g., c('pclass = levels(pclass)', 'age = seq(0,100,20)') |
pred_names | Names for the predictions to be stored. If one name is provided, only the first column of predictions is stored. If empty, the levels in the response variable of the rforest model will be used |
OOB | Use Out-Of-Bag predictions (TRUE or FALSE). Relevant when evaluating predictions for the training sample. If missing, datasets will be compared to determine of OOB predictions should be used |
dec | Number of decimals to show |
envir | Environment to extract data from |
... | further arguments passed to or from other methods |
See https://radiant-rstats.github.io/docs/model/rforest.html for an example in Radiant
rforest
to generate the result
summary.rforest
to summarize results
result <- rforest(titanic, "survived", c("pclass", "sex"), lev = "Yes") predict(result, pred_cmd = "pclass = levels(pclass)")#> Random Forest #> Data : titanic #> Response variable : survived #> Level(s) : Yes in survived #> Explanatory variables: pclass, sex #> Prediction command : pclass = levels(pclass) #> Additional arguments : OOB = NULL #> #> sex pclass Yes No #> male 1st 0.833 0.167 #> male 2nd 0.816 0.184 #> male 3rd 0.505 0.495result <- rforest(diamonds, "price", "carat:color", type = "regression") predict(result, pred_cmd = "carat = 1:3")#> Random Forest #> Data : diamonds #> Response variable : price #> Explanatory variables: carat, clarity, cut, color #> Prediction command : carat = 1:3 #> Additional arguments : OOB = NULL #> #> clarity cut color carat Prediction #> SI1 Ideal G 1 3014.741 #> SI1 Ideal G 2 8309.019 #> SI1 Ideal G 3 9859.129#>#>#> Random Forest #> Data : diamonds #> Response variable : price #> Explanatory variables: carat, clarity, cut, color #> Prediction dataset : diamonds #> Additional arguments : OOB = NULL #> #> carat clarity cut color Prediction #> 0.320 VS1 Ideal H 602.805 #> 0.340 SI1 Very Good G 576.379 #> 0.300 VS2 Very Good G 545.945 #> 0.350 VVS2 Ideal H 748.498 #> 0.400 VS2 Premium F 1009.561 #> 0.600 VVS1 Ideal E 2865.482