Predict method for the conjoint function

# S3 method for conjoint
predict(object, pred_data = NULL, pred_cmd = "",
  conf_lev = 0.95, se = FALSE, interval = "confidence", dec = 3,
  envir = parent.frame(), ...)

Arguments

object

Return value from conjoint

pred_data

Provide the dataframe to generate predictions. The dataset must contain all columns used in the estimation

pred_cmd

Command used to generate data for prediction

conf_lev

Confidence level used to estimate confidence intervals (.95 is the default)

se

Logical that indicates if prediction standard errors should be calculated (default = FALSE)

interval

Type of interval calculation ("confidence" or "prediction"). Set to "none" if se is FALSE

dec

Number of decimals to show

envir

Environment to extract data from

...

further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/multivariate/conjoint.html for an example in Radiant

See also

conjoint to generate the result

summary.conjoint to summarize results

plot.conjoint to plot results

Examples

result <- conjoint(mp3, rvar = "Rating", evar = "Memory:Shape") predict(result, pred_data = mp3)
#> Conjoint Analysis #> Data : mp3 #> Response variable : Rating #> Explanatory variables: Memory, Radio, Size, Price, Shape #> Prediction dataset : mp3 #> #> Memory Radio Size Price Shape Prediction #> 4GB No Small $50 Square 53.278 #> 6GB Yes Medium $50 Square 64.889 #> 4GB Yes Medium $100 Square 50.389 #> 8GB No Large $100 Square 67.611 #> 8GB No Small $150 Square 49.111 #> 6GB Yes Large $150 Square 24.722 #> 6GB No Small $50 Circular 74.278 #> 8GB Yes Large $50 Circular 93.889 #> 4GB Yes Small $100 Circular 65.889 #> 6GB No Medium $100 Circular 65.278 #> 8GB No Medium $150 Circular 60.278 #> 4GB Yes Large $150 Circular 30.389 #> 8GB Yes Medium $50 Rectangular 72.389 #> 4GB No Large $50 Rectangular 30.278 #> 8GB Yes Small $100 Rectangular 67.722 #> 6GB No Large $100 Rectangular 31.111 #> 6GB Yes Small $150 Rectangular 18.722 #> 4GB No Medium $150 Rectangular 2.778