Summary method for kclus

# S3 method for kclus
summary(object, dec = 2, ...)

Arguments

object

Return value from kclus

dec

Number of decimals to show

...

further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/multivariate/kclus.html for an example in Radiant

See also

kclus to generate results

plot.kclus to plot results

store.kclus to add cluster membership to the selected dataset

Examples

result <- kclus(shopping, vars = "v1:v6", nr_clus = 3) summary(result)
#> K-means cluster analysis #> Data : shopping #> Variables : v1, v2, v3, v4, v5, v6 #> Clustering by: K-means #> HC method : ward.D #> HC distance : sq.euclidian #> Standardize : TRUE #> Observations : 20 #> Generated : 3 clusters of sizes 8 | 6 | 6 #> #> Cluster means: #> v1 v2 v3 v4 v5 v6 #> Cluster 1 5.75 3.62 6.00 3.12 1.88 3.88 #> Cluster 2 1.67 3.00 1.83 3.50 5.50 3.33 #> Cluster 3 3.50 5.83 3.33 6.00 3.50 6.00 #> #> Percentage of within cluster heterogeneity accounted for by each cluster: #> #> Cluster 1 40.31% #> Cluster 2 25.98% #> Cluster 3 33.71% #> #> Between cluster heterogeneity accounts for 73.93% of the #> total heterogeneity in the data (higher is better)