Summary method for the pre_factor function

# S3 method for pre_factor
summary(object, dec = 2, ...)

Arguments

object

Return value from pre_factor

dec

Rounding to use for output

...

further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/multivariate/pre_factor.html for an example in Radiant

See also

pre_factor to calculate results

plot.pre_factor to plot results

Examples

result <- pre_factor(shopping, "v1:v6") summary(result)
#> Pre-factor analysis diagnostics #> Data : shopping #> Variables : v1, v2, v3, v4, v5, v6 #> Observations: 20 #> Correlation : Pearson #> #> Bartlett test #> Null hyp. : variables are not correlated #> Alt. hyp. : variables are correlated #> Chi-square: 66.71 df(15), p.value < .001 #> #> KMO test: 0.55 #> #> Variable collinearity: #> Rsq KMO #> v1 0.89 0.52 #> v2 0.38 0.78 #> v3 0.79 0.59 #> v4 0.59 0.48 #> v5 0.81 0.64 #> v6 0.58 0.43 #> #> Fit measures: #> Eigenvalues Variance % Cumulative % #> PC1 2.66 0.44 0.44 #> PC2 2.15 0.36 0.80 #> PC3 0.47 0.08 0.88 #> PC4 0.43 0.07 0.95 #> PC5 0.22 0.04 0.99 #> PC6 0.06 0.01 1.00
pre_factor(computer, "high_end:business") %>% summary()
#> Warning: NaNs produced
#> Error in solve.default(r) : #> system is computationally singular: reciprocal condition number = 8.23843e-18
#> matrix is not invertible, image not found
#> The selected variables are perfectly collinear. Please check the correlations #> and remove any variable with a correlation of 1 or -1 from the analysis