Summary method for the prmap function
# S3 method for prmap summary(object, cutoff = 0, dec = 2, ...)
object | Return value from |
---|---|
cutoff | Show only loadings with (absolute) values above cutoff (default = 0) |
dec | Rounding to use for output |
... | further arguments passed to or from other methods |
See https://radiant-rstats.github.io/docs/multivariate/prmap.html for an example in Radiant
prmap
to calculate results
plot.prmap
to plot results
#> Attribute based brand map #> Data : computer #> Attributes : high_end, stylish, modern, value, dated, innovative, business #> Dimensions : 2 #> Rotation : varimax #> Observations: 5 #> Correlation : Pearson #> #> Brand - Factor scores: #> RC1 RC2 #> Apple 1.30 0.09 #> Dell -0.32 -0.21 #> Gateway -1.19 -0.93 #> HP -0.52 1.65 #> Sony 0.73 -0.60 #> #> Attribute - Factor loadings: #> RC1 RC2 #> high_end 0.94 -0.16 #> stylish 0.98 0.06 #> modern 0.99 0.03 #> value -0.93 -0.28 #> dated -0.97 0.21 #> innovative 0.86 0.19 #> business 0.02 0.99 #> #> Fit measures: #> RC1 RC2 #> Eigenvalues 5.35 1.16 #> Variance % 0.76 0.17 #> Cumulative % 0.76 0.93 #> #> Attribute communalities: #> high_end 0.91 #> stylish 0.97 #> modern 0.97 #> value 0.94 #> dated 0.99 #> innovative 0.77 #> business 0.97#> Attribute based brand map #> Data : computer #> Attributes : high_end, stylish, modern, value, dated, innovative, business #> Dimensions : 2 #> Rotation : varimax #> Observations: 5 #> Correlation : Pearson #> #> Brand - Factor scores: #> RC1 RC2 #> Apple 1.30 0.09 #> Dell -0.32 -0.21 #> Gateway -1.19 -0.93 #> HP -0.52 1.65 #> Sony 0.73 -0.60 #> #> Attribute - Factor loadings: #> RC1 RC2 #> high_end 0.94 #> stylish 0.98 #> modern 0.99 #> value -0.93 #> dated -0.97 #> innovative 0.86 #> business 0.99 #> #> Fit measures: #> RC1 RC2 #> Eigenvalues 5.35 1.16 #> Variance % 0.76 0.17 #> Cumulative % 0.76 0.93 #> #> Attribute communalities: #> high_end 0.91 #> stylish 0.97 #> modern 0.97 #> value 0.94 #> dated 0.99 #> innovative 0.77 #> business 0.97prmap( computer, brand = "brand", attr = "high_end:dated", pref = c("innovative","business") ) %>% summary()#> Attribute based brand map #> Data : computer #> Attributes : high_end, stylish, modern, value, dated #> Preferences : RC1, RC2 #> Dimensions : 2 #> Rotation : varimax #> Observations: 5 #> Correlation : Pearson #> #> Brand - Factor scores: #> RC1 RC2 #> Apple 0.73 0.95 #> Dell 0.77 -1.22 #> Gateway -0.83 -0.93 #> HP -1.32 0.67 #> Sony 0.66 0.53 #> #> Attribute - Factor loadings: #> RC1 RC2 #> high_end 0.89 0.44 #> stylish 0.58 0.81 #> modern 0.77 0.62 #> value -0.44 -0.89 #> dated -0.82 -0.55 #> #> Preference correlations: #> RC1 RC2 communalities #> innovative 0.44 0.72 0.70 #> business -0.38 0.44 0.34 #> #> Fit measures: #> RC1 RC2 #> Eigenvalues 2.60 2.33 #> Variance % 0.52 0.47 #> Cumulative % 0.52 0.99 #> #> Attribute communalities: #> high_end 0.99 #> stylish 0.99 #> modern 0.98 #> value 0.99 #> dated 0.98