Predict method for the regress function
# S3 method for regress predict( object, pred_data = NULL, pred_cmd = "", conf_lev = 0.95, se = TRUE, interval = "confidence", dec = 3, envir = parent.frame(), ... )
object | Return value from |
---|---|
pred_data | Provide the dataframe to generate predictions (e.g., diamonds). The dataset must contain all columns used in the estimation |
pred_cmd | Command used to generate data for prediction |
conf_lev | Confidence level used to estimate confidence intervals (.95 is the default) |
se | Logical that indicates if prediction standard errors should be calculated (default = FALSE) |
interval | Type of interval calculation ("confidence" or "prediction"). Set to "none" if se is FALSE |
dec | Number of decimals to show |
envir | Environment to extract data from |
... | further arguments passed to or from other methods |
See https://radiant-rstats.github.io/docs/model/regress.html for an example in Radiant
regress
to generate the result
summary.regress
to summarize results
plot.regress
to plot results
result <- regress(diamonds, "price", c("carat", "clarity")) predict(result, pred_cmd = "carat = 1:10")#> Linear regression (OLS) #> Data : diamonds #> Response variable : price #> Explanatory variables: carat, clarity #> Interval : confidence #> Prediction command : carat = 1:10 #> #> clarity carat Prediction 2.5% 97.5% +/- #> SI1 1 5265.569 5174.776 5356.362 90.793 #> SI1 2 13703.599 13557.662 13849.536 145.937 #> SI1 3 22141.629 21908.326 22374.933 233.303 #> SI1 4 30579.660 30251.571 30907.748 328.088 #> SI1 5 39017.690 38592.329 39443.051 425.361 #> SI1 6 47455.720 46931.983 47979.458 523.738 #> SI1 7 55893.751 55271.056 56516.445 622.695 #> SI1 8 64331.781 63609.787 65053.775 721.994 #> SI1 9 72769.811 71948.301 73591.322 821.511 #> SI1 10 81207.842 80286.667 82129.017 921.175#> Linear regression (OLS) #> Data : diamonds #> Response variable : price #> Explanatory variables: carat, clarity #> Interval : confidence #> Prediction command : clarity = levels(clarity) #> #> carat clarity Prediction 2.5% 97.5% +/- #> 0.794 I1 -78.806 -462.319 304.707 383.513 #> 0.794 SI2 2711.953 2603.644 2820.263 108.310 #> 0.794 SI1 3529.725 3440.015 3619.436 89.711 #> 0.794 VS2 4171.100 4077.495 4264.704 93.605 #> 0.794 VS1 4383.150 4268.576 4497.725 114.574 #> 0.794 VVS2 5030.670 4886.596 5174.743 144.074 #> 0.794 VVS1 4948.863 4785.838 5111.888 163.025 #> 0.794 IF 5186.364 4942.495 5430.234 243.869result <- regress(diamonds, "price", c("carat", "clarity"), int = "carat:clarity") predict(result, pred_data = diamonds) %>% head()#> Linear regression (OLS) #> Data : diamonds #> Response variable : price #> Explanatory variables: carat, clarity #> Interval : confidence #> Prediction dataset : diamonds #> #> carat clarity Prediction 2.5% 97.5% +/- #> 0.320 VS1 240.946 88.847 393.045 152.099 #> 0.340 SI1 -119.580 -249.112 9.952 129.532 #> 0.300 VS2 -1.681 -129.827 126.465 128.146 #> 0.350 VVS2 854.443 690.259 1018.626 164.184 #> 0.400 VS2 842.564 727.982 957.146 114.582 #> 0.600 VVS1 3450.421 3290.503 3610.339 159.918