Summary method for the evalbin function

# S3 method for evalbin
summary(object, prn = TRUE, dec = 3, ...)

Arguments

object

Return value from evalbin

prn

Print full table of measures per model and bin

dec

Number of decimals to show

...

further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/model/evalbin.html for an example in Radiant

See also

evalbin to summarize results

plot.evalbin to plot results

Examples

data.frame(buy = dvd$buy, pred1 = runif(20000), pred2 = ifelse(dvd$buy == "yes", 1, 0)) %>% evalbin(c("pred1", "pred2"), "buy") %>% summary()
#> Evaluate predictions for binary response models #> Data : . #> Results for : All #> Predictors : pred1, pred2 #> Response : buy #> Level : yes in buy #> Bins : 10 #> Cost:Margin : 1 : 2 #> #> pred bins nr_obs nr_resp resp_rate gains profit ROME cum_prop cum_resp #> pred1 10 2,000 529 0.265 0.101 -942.000 -0.471 0.100 529 #> pred1 9 2,000 513 0.257 0.098 -1,916.000 -0.479 0.200 1,042 #> pred1 8 2,000 536 0.268 0.102 -2,844.000 -0.474 0.300 1,578 #> pred1 7 2,000 523 0.262 0.100 -3,798.000 -0.475 0.400 2,101 #> pred1 6 2,000 494 0.247 0.094 -4,810.000 -0.481 0.500 2,595 #> pred1 5 2,000 520 0.260 0.099 -5,770.000 -0.481 0.600 3,115 #> pred1 4 2,000 555 0.278 0.106 -6,660.000 -0.476 0.700 3,670 #> pred1 3 2,000 535 0.268 0.102 -7,590.000 -0.474 0.800 4,205 #> pred1 2 2,000 549 0.275 0.105 -8,492.000 -0.472 0.900 4,754 #> pred1 1 2,000 492 0.246 0.094 -9,508.000 -0.475 1.000 5,246 #> pred2 3 5,246 5,246 1.000 1.000 5,246.000 1.000 0.262 5,246 #> pred2 10 14,754 0 0.000 0.000 -9,508.000 -0.475 1.000 5,246 #> cum_resp_rate cum_lift cum_gains #> 0.265 1.008 0.101 #> 0.261 0.993 0.199 #> 0.263 1.003 0.301 #> 0.263 1.001 0.400 #> 0.260 0.989 0.495 #> 0.260 0.990 0.594 #> 0.262 0.999 0.700 #> 0.263 1.002 0.802 #> 0.264 1.007 0.906 #> 0.262 1.000 1.000 #> 1.000 3.812 1.000 #> 0.262 1.000 1.000