Summary method for the full_factor function

# S3 method for full_factor
summary(object, cutoff = 0, fsort = FALSE,
  dec = 2, ...)

Arguments

object

Return value from full_factor

cutoff

Show only loadings with (absolute) values above cutoff (default = 0)

fsort

Sort factor loadings

dec

Number of decimals to show

...

further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/multivariate/full_factor.html for an example in Radiant

See also

full_factor to calculate results

plot.full_factor to plot results

Examples

result <- full_factor(shopping , "v1:v6", nr_fact = 2) summary(result)
#> Factor analysis #> Data : shopping #> Variables : v1, v2, v3, v4, v5, v6 #> Factors : 2 #> Method : PCA #> Rotation : varimax #> Observations: 20 #> Correlation : Pearson #> #> Factor loadings: #> RC1 RC2 #> v1 0.96 -0.02 #> v2 0.04 0.82 #> v3 0.92 -0.14 #> v4 -0.17 0.85 #> v5 -0.92 -0.13 #> v6 0.11 0.85 #> #> Fit measures: #> RC1 RC2 #> Eigenvalues 2.66 2.15 #> Variance % 0.44 0.36 #> Cumulative % 0.44 0.80 #> #> Attribute communalities: #> v1 92.38% #> v2 67.89% #> v3 85.82% #> v4 74.56% #> v5 87.30% #> v6 73.48% #> #> Factor scores (max 10 shown): #> RC1 RC2 #> 1.21 -0.70 #> -1.18 -0.39 #> 1.36 -0.92 #> 0.17 1.20 #> -1.32 -0.97 #> 0.88 -0.45 #> 0.67 -0.72 #> 1.58 -0.42 #> -1.02 -0.74 #> -0.44 1.18
summary(result, cutoff = .5, fsort = TRUE)
#> Factor analysis #> Data : shopping #> Variables : v1, v2, v3, v4, v5, v6 #> Factors : 2 #> Method : PCA #> Rotation : varimax #> Observations: 20 #> Correlation : Pearson #> #> Factor loadings: #> RC1 RC2 #> v1 0.96 #> v5 -0.92 #> v3 0.92 #> v6 0.85 #> v4 0.85 #> v2 0.82 #> #> Fit measures: #> RC1 RC2 #> Eigenvalues 2.66 2.15 #> Variance % 0.44 0.36 #> Cumulative % 0.44 0.80 #> #> Attribute communalities: #> v1 92.38% #> v2 67.89% #> v3 85.82% #> v4 74.56% #> v5 87.30% #> v6 73.48% #> #> Factor scores (max 10 shown): #> RC1 RC2 #> 1.21 -0.70 #> -1.18 -0.39 #> 1.36 -0.92 #> 0.17 1.20 #> -1.32 -0.97 #> 0.88 -0.45 #> 0.67 -0.72 #> 1.58 -0.42 #> -1.02 -0.74 #> -0.44 1.18